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Abstract

In this paper, the derivation of higher-order continuum models from a discrete medium is addressed, with the

following aims: (i) for a given discrete model and a given coupling of discrete and continuum degrees of freedom, the

continuum should be defined uniquely, (ii) the continuum is isotropic, and (iii) boundary conditions are derived

consistently with the energy functional and the equations of motion of the continuum. Firstly, a comparison is made

between two continualisation methods, namely based on the equations of motion and on the energy functional. They

are shown to give identical results. Secondly, the issue of isotropy is addressed. A new approach is developed in which

two, rather than one, layers of neighbouring particles are considered. Finally, the formulation and interpretation of

boundary conditions is treated. By means of the Hamilton–Ostrogradsky principle, boundary conditions are derived

that are consistent with the energy functional and the equations of motion. A relation between standard stresses and

higher-order stresses is derived and used to make an interpretation of the higher-order stresses. An additional result of

this study is the non-uniqueness of the higher-order contributions to the energy.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In many fields of engineering an interaction between spatial scales exists. Processes on lower scales of

observation (e.g. microscale, nanoscale) have an influence on higher scales of observation (e.g. macro-scale)
and vice versa. Modelling approaches aim to balance the accuracy and the efficiency of the model, therefore

taking into account the full detail of the lower scales is not a feasible option. One of the alternative

strategies is to replace the inhomogeneities of the lower scales by an enhanced continuum description on the

higher scale. Depending on the model description of the lower scales, use can then be made of homoge-

nisation techniques (translating an inhomogeneous continuum into a homogeneous continuum) or
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continualisation techniques (translating a discrete medium into a homgeneous continuum). In this work,

attention is focussed on continualisation of regular discrete media.

The simplest continuum model that can be obtained via continualisation is the so-called classical con-

tinuum, in which the constitutive equations relate the standard stresses to the standard strains algebraically.
More accurate descriptions of the underlying microstructure or nanostructure can be obtained by

enhancing the constitutive relations to differential equations, thereby obtaining so-called higher-order

continua. For linear elastic models, the order of the continuum is retrieved by taking the highest order of

displacement derivative in the equilibrium equations, minus two. This nomenclature is followed below: a

second-order model contains fourth-order displacement derivatives and lower in the equations of motion.

Invariably, the higher-order spatial derivatives are accompanied by factors of a certain length scale; it is this

length scale that represents the lower scales.

Second-order models have been derived from discrete models and inhomogeneous continua in the lit-
erature, see for instance (Rubin et al., 1995; Chang and Gao, 1995; M€uhlhaus and Oka, 1996; Suiker et al.,

2001; Chen and Fish, 2001; Chang et al., 2002; Andrianov et al., 2003; Triantafyllidis and Bardenhagen,

1993), although their stability is not always guaranteed (Rubin et al., 1995; M€uhlhaus and Oka, 1996;

Suiker et al., 2001; Chen and Fish, 2001; Chang et al., 2002; Askes et al., 2002; Metrikine and Askes, 2002;

Askes and Metrikine, 2002). Other second-order models have been proposed in order to regularise sin-

gularities in the solution (Aifantis, 1984; Aifantis, 1987; Schreyer and Chen, 1986; Lasry and Belytschko,

1988; M€uhlhaus and Aifantis, 1991; de Borst and M€uhlhaus, 1992; Sluys, 1992; Pamin, 1994; Triantafyllidis

and Aifantis, 1986; Altan and Aifantis, 1997; Zhu et al., 1997; Fleck and Hutchinson, 2001; Peerlings et al.,
1996; Comi and Driemeier, 1998; Askes and Sluys, 2002; Chambon et al., 1998; Gutkin, 2000; Askes and

Sluys, 2003). More conditions could be imposed on the format of second-order models, however, below the

restriction is made to three issues:

(1) The continuum must be defined uniquely for a given discrete model and for a given link between the

degrees of freedom of the discrete model and those of the continuum. Various continualisation strate-

gies exist, but it is required that they yield the same field equations for the continuum, including the

same higher-order constitutive coefficients. In Section 2, two approaches will be scrutinised in the con-
text of a one-dimensional system.

(2) Many materials behave isotropically on the higher scales of observation. For these materials, the con-

tinuum should be isotropic, even so the underlying discrete model is anisotropic. A new approach to

derive an isotropic second-order continuum is presented in Section 3.

(3) Higher-order field equations lead to higher-order boundary conditions. The boundary conditions

should be formulated consistently with the energy functional and the equations of motion. This can

be accomplished by applying the Hamilton–Ostrogradsky principle, cf. Section 4. Furthermore, the

physical meaning of the boundary conditions should be investigated.

Although it is admitted that stability of the derived models is of paramount importance, this issue will

only be touched briefly upon in Section 3.3.
2. Continualisation procedures

Different strategies can be taken to derive a continuum model from a discrete medium. Below, we

distinguish between continualisation procedures that are applied to the equations of motion (Section 2.1)

and to the energy functional (Section 2.2). For simplicity, a one-dimensional medium is considered,

although the findings can be straightforwardly extended to multiple dimensions (see for instance Section 3).
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Fig. 1. One-dimensional discrete medium.
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The geometry of the discrete medium is depicted in Fig. 1. All particles have mass M and all springs have

stiffness K. The interparticle distance is denoted as l.

2.1. Continualisation of the equations of motion

The equation of motion for the discrete particle m is written as
MxðmÞtt ¼ Fiþ1 � Fi ¼ K xðmþ1Þ�
� 2xðmÞ þ xðm�1Þ� ð1Þ
In this work, subscripts x, y and t denote derivatives. Tensile forces F in the springs are assumed to be

positive. To continualise Eq. (1), xðmÞ is replaced by the displacement of the continuum uðxÞ, whereas the
displacements of the neighbouring particles xðm�1Þ are replaced by uðx� lÞ. Taylor series expansions are

used for uðx� lÞ according to
uðx� lÞ ¼ uðxÞ � luxðxÞ þ
1

2
l2uxxðxÞ �

1

6
l3uxxxðxÞ þ � � � ð2Þ
With these substitutions, Eq. (1) is elaborated as
qutt ¼ E uxx

�
þ 1

12
l2uxxxx þ

1

360
l4uxxxxxx þ � � �

�
ð3Þ
where the macroscopic material parameters q ¼ M=Al and E ¼ Kl=A have been introduced, and A is the
cross-sectional area. For notational simplicity, the dependence of u and its derivatives on x and t is not

shown explicitly. The classical one-dimensional wave equation is obtained from Eq. (3) by neglecting all

terms with powers of l higher than 0.

2.2. Continualisation of the energy functional

Alternatively, the transition from discrete model to continuum can be made on the level of the energy

functionals. The LagrangianLðmÞ associated with particle m is written as the difference of the kinetic energy
and potential energy:
LðmÞ ¼ U
ðmÞ
kin �U

ðmÞ
pot ¼

1

2
MfxðmÞt g2 � 1

2
K ½xðmþ1Þ
n

� xðmÞ�2 þ ½xðmÞ � xðm�1Þ�2
o

ð4Þ
Eq. (4) expresses the kinetic energy of particle xðmÞ and the potential energy corresponding to the two

springs attached to this particle. For a continuous medium, the Lagrangian must be recast as a Lagrangian

density. However, it must be realised that spring i is attached to two particles, therefore the contribution of

the potential energy as given in Eq. (4) must be divided by two to obtain the correct potential energy
density. Thus,
k ¼
U

ðmÞ
kin � 1

2
U

ðmÞ
pot

Al
ð5Þ
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where k is the Lagrangian density of the continuum. In the continualisation the discrete degrees of freedom

are again replaced by their continuous counterparts, and Taylor series expansions are applied where

appropriate. This yields
k ¼ 1

2
qfutg2 �

1

4
E ux

�(
þ 1

2
luxx þ

1

6
l2uxxx þ

1

24
l3uxxxx þ � � �

�2

þ ux

�
� 1

2
luxx þ

1

6
l2uxxx �

1

24
l3uxxxx þ � � �

�2
)

ð6Þ
The equation of motion in its Lagrangian format reads (Metrikine and Askes, 2002)
o

ot
ok
out

¼ � o

ox
ok
oux

þ o2

ox2
ok
ouxx

� o3

ox3
ok
ouxxx

þ � � � ð7Þ
Substituting Eq. (6) in Eq. (7) and grouping together the various powers of l yields
qutt ¼ E uxx

	
þ 1

6

�
� 1

4
þ 1

6

�
l2uxxxx þ

1

120

�
� 1

48
þ 1

36
� 1

48
þ 1

120

�
l4uxxxxxx þ � � �



ð8Þ
which is identical to Eq. (3). Note that the l2-term in Eq. (8) is obtained via three contributions from Eq.

(6), corresponding to uxuxxx, uxxuxx and uxxxux, respectively. Similar observations hold for terms of l4 and

higher.
3. Derivation of an isotropic second-order continuum

With the conclusion, obtained from Section 2, that continualisation of the equations of motion and of

energy are equivalent, either approach could be chosen in the sequel to derive a continuum model from a

discrete medium.

3.1. Discrete model

Intuitively, discrete media resemble closely the material that they are intended to model, e.g. granular

media such as soil or concrete, or metals and ceramics on the atomistic level. Normally, some degree of

randomness is present in the structure of these materials, e.g. in terms of particle size distribution and

regularity of the interparticle connections. However, taking into account this randomness would complicate

the continualisation process significantly, therefore periodicity of the discrete medium is often assumed.

Two popular discrete and periodic representations of microstructured materials are depicted in Fig. 2,

i.e. a hexagonal lattice and a square lattice (Suiker et al., 2001). In both lattices, the characteristic distance
between the different particles is denoted by l. In the hexagonal lattice all springs are identical, whereas in

the square lattice axial springs of length l and diagonal springs of length l
ffiffiffi
2

p
are distinguished. In principle,

all springs could be of the longitudinal, transversal or rotational type, which corresponds to the normal

stiffness, shear stiffness and rotational stiffness of the interparticle contact, respectively.

An inherent anisotropy is present in the two lattices of Fig. 2. In contrast, the materials that are to be

modelled with these lattices are nearly isotropic at the macroscale. Thus, in the continualisation process

certain restrictions need to be enforced such that isotropy results. For instance, an isotropic classical

continuum based on a square lattice with only longitudinal springs is obtained by taking the stiffness of the
diagonal springs half the stiffness of the axial springs (Suiker et al., 2001). The classical continuum based on

the hexagonal lattice with only longitudinal springs is automatically isotropic; however, this does not imply
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Fig. 2. Two-dimensional discrete lattices––hexagonal lattice (left) and square lattice (right).
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that also second-order models based on the hexagonal lattice are automatically isotropic, which will be

elucidated in Section 3.2.

Since the classical continuum based on the hexagonal lattice is isotropic without further assumptions,
this lattice is used in the remainder of this work and the square lattice is left out of consideration. The

kinetic and potential energy corresponding to the central particle, depicted in Fig. 2 (left) and denoted by

ðm; nÞ, read
U
ðm;nÞ
kin ¼ 1

2
M xðm;nÞt

� �2n
þ yðm;nÞt

� �2o ð9Þ
and
U
ðm;nÞ
pot ¼ 1

2
K
X6

i¼1

Dl2i ð10Þ
respectively, where xðm;nÞ and yðm;nÞ are the displacement components of particle ðm; nÞ and Dli is the elon-

gation of spring i. These elongations can be elaborated as
Dl1 ¼ xðmþ2;nÞ � xðm;nÞ ð11aÞ
Dl2 ¼
1

2
xðmþ1;nþ1Þ



� xðm;nÞ þ

ffiffiffi
3

p
yðmþ1;nþ1Þ�

� yðm;nÞ
��

ð11bÞ
Dl3 ¼
1

2
xðm;nÞ



� xðm�1;nþ1Þ þ

ffiffiffi
3

p
yðm�1;nþ1Þ�

� yðm;nÞ
��

ð11cÞ
Dl4 ¼ xðm;nÞ � xðm�2;nÞ ð11dÞ
Dl5 ¼
1

2
xðm;nÞ



� xðm�1;n�1Þ þ

ffiffiffi
3

p
yðm;nÞ
�

� yðm�1;n�1Þ�� ð11eÞ
Dl6 ¼
1

2
xðmþ1;n�1Þ



� xðm;nÞ þ

ffiffiffi
3

p
yðm;nÞ
�

� yðmþ1;n�1Þ�� ð11fÞ
whereby the springs have been numbered counter-clockwise. The equations of motion are derived via
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oLðm;nÞ

oxðm;nÞ
¼ o

ot
oLðm;nÞ

oxðm;nÞt

ð12aÞ
and
oLðm;nÞ

oyðm;nÞ
¼ o

ot
oLðm;nÞ

oyðm;nÞt

ð12bÞ
where again the Lagrangian Lðm;nÞ ¼ U
ðm;nÞ
kin �U

ðm;nÞ
pot . In terms of particle displacements, Eqs. (12a) and

(12b) can be elaborated as
Mxðm;nÞtt ¼ K
4

n
� 12xðm;nÞ þ 4xðmþ2;nÞ þ 4xðm�2;nÞ þ xðmþ1;nþ1Þ þ xðm�1;nþ1Þ þ xðm�1;n�1Þ þ xðmþ1;n�1Þ

þ
ffiffiffi
3

p
yðmþ1;nþ1Þ�

� yðm�1;nþ1Þ þ yðm�1;n�1Þ � yðmþ1;n�1Þ�o ð13aÞ
and
Myðm;nÞtt ¼ K
4

n
� 12yðm;nÞ þ 3 yðmþ1;nþ1Þ�

þ yðm�1;nþ1Þ þ yðm�1;n�1Þ þ yðmþ1;n�1Þ�
þ

ffiffiffi
3

p
xðmþ1;nþ1Þ�

� xðm�1;nþ1Þ þ xðm�1;n�1Þ � xðmþ1;n�1Þ�o ð13bÞ
for the x and y-direction, respectively. The anisotropic character of the discrete model can be verified from

the magnitude of the coefficients in Eqs. (13a) and (13b).

3.2. Continualisation of hexagonal lattice

For the central particle ðm; nÞ the continuous displacement components u and v are set equal to the

discrete displacement components xðm;nÞ and yðm;nÞ, respectively. For the neighbouring particles, Taylor series
expansions are used, that is
xðm�2;nÞ ¼ uðx� l; yÞ ¼
X
i

ð�1Þi l
i

i!
oiuðx; yÞ

oxi
ð14aÞ

xðm�1;n�1Þ ¼ u x
�

� 1

2
l; y � 1

2

ffiffiffi
3

p
l
�

¼
X
i

X
j

ð�1Þið�1Þj
ð1
2
lÞi 1

2

ffiffiffi
3

p
l

� �j
i!j!

oiþjuðx; yÞ
oxioyj

ð14bÞ
for the x-direction, and
yðm�2;nÞ ¼ vðx� l; yÞ ¼
X
i

ð�1Þi l
i

i!
oivðx; yÞ

oxi
ð15aÞ

yðm�1;n�1Þ ¼ v x
�

� 1

2
l; y � 1

2

ffiffiffi
3

p
l
�

¼
X
i

X
j

ð�1Þið�1Þj
1
2
l

� �i 1
2

ffiffiffi
3

p
l

� �j
i!j!

oiþjvðx; yÞ
oxioyj

ð15bÞ
for the y-direction.
Expressions (14a)–(15b) can be substituted into Eqs. (13a) and (13b) to yield the equations of motion of

the continuum, that is
qutt ¼
2

5
E 3uxx
�

þ uyy þ 2vxy
�
þ 1

120
El2 11uxxxx

�
þ 6uxxyy þ 3uyyyy þ 4vxxxy þ 12vxyyy

�
ð16aÞ
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qvtt ¼
2

5
E vxx
�

þ 3vyy þ 2uxy
�
þ 1

120
El2 vxxxx

�
þ 18vxxyy þ 9vyyyy þ 4uxxxy þ 12uxyyy

�
ð16bÞ
whereby all terms of order l4 and higher have been neglected. From the relative magnitude of the classical

terms it can be concluded that the Poisson’s ratio predicted by the continuum is always equal to m ¼ 1=4.
With this Poisson’s ratio, a unique relation between the discrete spring stiffness K and the Young’s modulus
of the continuum E can be derived fitting the classical Lam�e equations as K ¼ 16Eh=15, in which h is the

dimension in the third direction. For the mass density q it is found that M ¼ ql2h. Crosschecking the

coefficients in Eqs. (16a) and (16b) reveals that the classical contributions (i.e. the terms of order l0) are
isotropic, whereas the second-order terms are anisotropic.

The same results can be obtained by substituting Eqs. (14a)–(15b) into Eqs. (12a) and (12b), in which

expressions (9), (10) and the two-dimensional counterpart of (5) must be used. The so-obtained Lagrangian

density is written as
k ¼ 1

2
qfu2t þ v2t g �

1

5
E 3u2x
n

þ u2y þ v2x þ 3v2y þ 2uxvy þ 2uyvx
o
� 1

240
El2 33u2xx

n
þ 9u2yy þ 3v2xx

þ 27v2yy þ 12u2xy þ 36v2xy þ 6uxxuyy þ 18vxxvyy þ 12uxy vxx
�

þ 3vyy
�
þ 12vxy uxx

�
þ 3uyy

�
þ 4ux 11uxxx

�
þ 3uxyy þ 3vxxy þ 3vyyy

�
þ 4vy uxxx

�
þ 9uxyy þ 9vxxy þ 9vyyy

�
þ 4ðuy þ vxÞ 3uxxy

�
þ 3uyyy þ vxxx þ 9vxyy

�o
ð17Þ
from which the equations of motion (16a) and (16b) can be retrieved via
o

ot
ok
out

¼ � o

ox
ok
oux

� o

oy
ok
ouy

þ o2

ox2
ok
ouxx

þ o2

oxoy
ok
ouxy

þ o2

oy2
ok
ouyy

� o3

ox3
ok
ouxxx

� o3

ox2oy
ok
ouxxy

� o3

oxoy2
ok
ouxyy

� o3

oy3
ok
ouyyy

ð18aÞ
o

ot
ok
ovt

¼ � o

ox
ok
ovx

� o

oy
ok
ovy

þ o2

ox2
ok
ovxx

þ o2

oxoy
ok
ovxy

þ o2

oy2
ok
ovyy

� o3

ox3
ok
ovxxx

� o3

ox2oy
ok
ovxxy

� o3

oxoy2
ok
ovxyy

� o3

oy3
ok
ovyyy

ð18bÞ
3.3. Continualisation of extended hexagonal lattice

The hexagonal lattice as described above does not lead to an isotropic second-order model. If isotropy is

desired, amendments are needed. In the authors’ opinion, these amendments should concern with the
discrete medium, such that the continualisation procedure does not require additional assumptions but

leads to isotropy automatically. To this end, another layer of particles is taken into account, such that an

extended hexagonal lattice is obtained, see Fig. 3. The two sets of springs (one for the inner layer of

neighbouring particles, one for the outer layer) are assumed to have different stiffnesses, denoted by K1 and

K2, respectively. Physically, this can be thought of as a representation of inter-particle contact (inner layer)

and long-range interaction via a matrix material (outer layer).

The equations of motion of the continuum in terms of the discrete material parameters M , K1 and K2 can

be elaborated as
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Fig. 3. Extended hexagonal lattice.
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Mutt ¼
3

8
K1ð þ 3K2Þl2 3uxx

�
þ uyy þ 2vxy

�
þ 1

128
l4 ð11K1

�
þ 81K2Þuxxxx þ ð6K1 þ 162K2Þuxxyy

þ ð3K1 þ 9K2Þuyyyy þ ð4K1 þ 108K2Þvxyyy þ ð12K1 þ 36K2Þvxyyy
�

ð19aÞ
and
Mvtt ¼
3

8
K1ð þ 3K2Þl2 3vxx

�
þ vyy þ 2uxy

�
þ 1

128
l4 ðK1

�
þ 27K2Þvxxxx þ ð18K1 þ 54K2Þvxxyy

þ ð9K1 þ 99K2Þvyyyy þ ð12K1 þ 36K2Þuxyyy þ ð4K1 þ 108K2Þuxyyy
�

ð19bÞ
Similar to the continualisation of the hexagonal lattice in Section 3.2, it is found that the classical terms are

isotropic. The higher-order terms can be made isotropic by requiring that K1 ¼ 9K2. Furthermore, fitting

the classical Lam�e equations yields K1 ¼ 4Eh=5 and M ¼ ql2h. With these substitutions, Eqs. (19a) and

(19b) are elaborated as
qutt ¼
2

5
E 3uxx
�

þ uyy þ 2vxy
�
þ 1

40
El2 5uxxxx

�
þ 6uxxyy þ uyyyy þ 4vxxxy þ 4vxyyy

�
ð20aÞ
qvtt ¼
2

5
E vxx
�

þ 3vyy þ 2uxy
�
þ 1

40
El2 vxxxx

�
þ 6vxxyy þ 5vyyyy þ 4uxxxy þ 4uxyyy

�
ð20bÞ
Note that the only changes with respect to Eqs. (16a) and (16b) concern with the higher-order terms.

The Lagrangian density for this model is obtained by continualisation of the Lagrangian function of the
extended hexagonal lattice. It is found that
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k ¼ 1

2
q u2t
�

þ v2t
�
� 1

5
E 3u2x
n

þ u2y þ v2x þ 3v2y þ 2uxvy þ 2uyvx
o
� 1

80
El2 15u2xx

n
þ 3u2yy þ 3v2xx

þ 15v2yy þ 12u2xy þ 12v2xy þ 6uxxuyy þ 6vxxvyy þ 12uxy vxx
�

þ vyy
�
þ 12vxy uxx

�
þ uyy

�
þ 4ux 5uxxx

�
þ 3uxyy þ 3vxxy þ vyyy

�
þ 4vy uxxx

�
þ 3uxyy þ 3vxxy þ 5vyyy

�
þ 4ðuy þ vxÞ 3uxxy

�
þ uyyy þ vxxx þ 3vxyy

�o
ð21Þ
which can be used to derive the equations of motion through Eqs. (18a) and (18b). The Lagrangian density
given in Eq. (21) has been derived directly from the energy of the discrete system, and as a result it contains

first, second and third derivatives of the displacements. To simplify further manipulations of the

Lagrangian density as given below in Section 4, all products of first and third derivatives are replaced by

products of second derivatives. Integration by parts of the various products of first and third derivatives,

while neglecting boundary terms, yields the following equalities to be understood in a weak sense
uxuxxx ¼ �u2xx ð22aÞ
uxuxyy ¼ � 1

3
uxxuyy �

2

3
u2xy ð22bÞ
uxvxxy ¼ � 2

3
uxxvxy �

1

3
uxyvxx ð22cÞ
etc., in which an equal treatment of integration in x and y-direction is assumed. By means of the so-obtained

identities (22), the Lagrangian density (21) can be elaborated as
k ¼ 1

2
qfu2t þ v2t g �

1

5
E 3u2x
n

þ u2y þ v2x þ 3v2y þ 2uxvy þ 2uyvx
o
þ 1

80
El2 5ðu2xx

n
þ v2yyÞ þ u2yy þ v2xx

þ 4ðu2xy þ v2xyÞ þ 2ðuxxuyy þ vxxvyyÞ þ 4 uxxvxy
�

þ uyyvxy þ uxyvxx þ uxyvyy
�o

ð23Þ
such that a functional with at most second derivatives is obtained.
Two important observations can be made:

(1) Inspection of Eqs. (21) and (23) shows that the higher-order contribution to the potential energy cannot

be expressed uniquely. In particular, the various terms can be written either as products of first and

third derivatives or as products of second derivatives. It can be verified that the equations of motion

(20a) and (20b) are retrieved from each of the energy functionals, making use of Eqs. (18a) and (18b).

(2) Taking for instance uy ¼ vx ¼ 0 it is seen that the higher-order part of the potential energy becomes neg-

ative. Thus, unconditional positive definiteness of the potential energy is not fulfilled and instabilities
may occur (Askes et al., 2002; Metrikine and Askes, 2002; Askes and Metrikine, 2002). This is indeed

a severe drawback of this model, which is caused by the truncation of the Taylor series. It can be over-

come by a relaxed kinematic coupling of discrete model and continuum, see for instance (Metrikine and

Askes, 2002; Askes and Metrikine, 2002) or by using Pad�e approximations, see (Rubin et al., 1995;

Chen and Fish, 2001; Andrianov et al., 2003).

It is noted that the above procedure can be used to derive an isotropic second-order model. Taking into

account infinitely many terms in the continualisation procedure will yield the equations of the discrete
lattice, which are anisotropic. Thus, additional measures are needed to guarantee that models of order four

are isotropic, e.g. considering also the third layer of neighbouring particles.
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4. Formulation and interpretation of boundary conditions

Above, the equations of motion have been derived that are consistent with the underlying energy

functional. To complete the model description, boundary conditions must be derived that are consistent
with the equations of motion. To this end, the Hamilton–Ostrogradsky principle is applied to the

Lagrangian density derived above. In particular, use is made of Eq. (23) rather than of (21), such that k only

depends on the first and second spatial derivatives of u and v and on the first time derivatives. However,

employing the original Lagrangian density given through Eq. (21) would give identical results.

4.1. Hamilton–Ostrogradsky principle

A perturbation of the displacements is considered according to
~u ¼ uþ �n ð24aÞ

~v ¼ vþ �g ð24bÞ

whereby n and g are normalised perturbations and � is the amplitude of the perturbation. It is assumed that

both ðu; vÞ and ð~u;~vÞ describe the motion of the considered body from time t1 to time t2, therefore
nðt1Þ ¼ nðt2Þ ¼ gðt1Þ ¼ gðt2Þ ¼ 0. The body is assumed to be extended over ½ðxa; yaÞ; ðxb; ybÞ�. The Hamilton–

Ostrogradsky principle states that (Goldstein, 1964; Washizu, 1975; Lurie, 2002)
d

d�

����
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¼ 0 ð25Þ
whereby k is evaluated at the perturbed configuration. Thus,
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Since the elaboration of Eq. (26b) follows similar lines as that of Eq. (26a), only Eq. (26a) is considered in

the sequel. The terms in Eq. (26a) are rewritten via
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For the cross-derivative term, the x and y-directions are treated on an equal basis, hence a factor 1
2
:
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By means of Eqs. (27), Eq. (26a) can be elaborated as
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��� ¼ 0 ð28Þ
Eq. (28) should hold for arbitrary n, therefore each integral is required to vanish separately. Since

nðt1Þ ¼ nðt2Þ ¼ 0, the second integral in Eq. (28) cancels automatically. From the first integral the equation

of motion in x-direction can be retrieved, i.e.
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¼ 0 ð29Þ
which is in agreement with Eq. (18a). The third and fourth integral correspond to boundary integrals,
which vanish by prescribing n and/or its derivatives (kinematic or essential boundary conditions) or by

prescribing the corresponding factors in terms of k (dynamic or natural boundary conditions). Hence, the

following stress quantities can be identified:
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where indices 1 and 2 refer to the x and y-direction, respectively. The first index denotes the normal of the

plane on which the stress acts and the second index denotes the direction of the stress (which equals the x-
direction in the above equations, since only the variation of k with respect to n is discussed in detail). The

third index in Eqs. (30c)–(30f) refers to whether the variation of n with respect to x or y is taken.
The same procedure can be followed to derive the variation of the energy k with respect to g, by which

the remaining stress components are found. In terms of the displacement derivatives, the standard stresses

rij are expressed as
r11 ¼ rð0Þ
11 þ rð1Þ
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�
ð31cÞ
whereby the superscripts (0) and (1) refer to the classical part and the higher-order part of the standard

stresses. The standard stresses obey the usual symmetry r12 ¼ r21. For the higher-order stresses sijk it is

found that
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40
El2 5uxx

�
þ 2vxy þ uyy

�
ð32aÞ
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�
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40
El2 vxx

�
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�
ð32dÞ
The symmetry s112 ¼ s211 follows directly from Eqs. (30d) and (30e); a similar symmetry holds for

s221 ¼ s122. The other symmetries s121 ¼ s112 and s212 ¼ s221 do not follow from the Hamilton–Ostrogradsky

principle, and should be considered as specific to this model.

4.2. Relation between standard stresses and higher-order stresses

When the expressions of the standard stresses (31a)–(31c) and those of the higher-order stresses (32a)–

(32d) are compared to the Lagrangian density, Eq. (23), it is seen that the higher-order part of the standard

stresses rð1Þ
ij and the higher-order stresses sijk both derive from the same contributions to the potential

energy. Hence, if the potential energy is to be retrieved from the various stress tensors, it should hold that
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Z
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where index notation is used, eij are the usual (infinitesimal) strains work-conjugate to the standard stresses

rij, and vijk ¼ oeij=oxk are the strain gradients work-conjugate to the higher-order stresses sijk. Integrating
Eq. (33) by parts yields
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deijdy dx ¼ 0 ð34Þ
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whereby boundary terms have been neglected. For arbitrary strain fields it thus follows that
Fig. 4.

primar
rð1Þ
ij ¼ � osijk

oxk
ð35Þ
which is satisfied by the generic stress definitions (30a)–(30f) as well as by the model-specific stress defi-

nitions (31a)–(31c), (32a)–(32d).
4.3. Interpretation of natural boundary conditions

The format of the non-standard boundary conditions in a gradient-enhanced continuum has been

subject of ongoing debate, see e.g. (Metrikine and Askes, 2002; M€uhlhaus and Aifantis, 1991; de Borst and

M€uhlhaus, 1992; Pamin, 1994; Fleck and Hutchinson, 2001; Peerlings et al., 1996; Toupin, 1962; Mindlin,

1964; Ru and Aifantis, 1993; Polizzotto, 2003). Below, an interpretation is offered that is based on

observations found earlier in this work:

(1) From Eq. (28) it follows that the higher-order stresses are work-conjugate to variations with respect to x
and y of the perturbations n and g on the boundaries, e.g. s111 is work-conjugate to nx on the boundary

with x as normal vector, etc. Taking variations of n and g on the boundaries indicates that a lower scale

of observation must be chosen.

(2) In Eq. (35) a relation was found between the higher-order part of the standard stresses on the one hand

and the higher-order stresses on the other hand. This equation takes the format of an equilibrium equa-

tion, in which the divergence of a stress tensor equals minus a body force.

On the higher scale of observation a distinction is made between boundaries with x and y as normal
vector, cf. the first index of the stress quantities. These planes will be referred to as the primary planes; a

primary x-plane denotes that the x-direction is the normal vector on the higher level of observation, and vice
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versa for the primary y-plane. These primary planes are depicted in Fig. 4 together with all stress com-

ponents (standard and higher-order) that are relevant for each primary plane.

Whereas the classical equations of motion in terms of divergence of (standard) stress hold on the higher

scale of observation, on the lower scale of observation fluctuations of the macroscopic stress fields are
considered, which are driven by Eq. (35): taking the dimensions of the considered volume on the lower scale

as Dx and Dy, Eq. (35) is retrieved by taking the limits Dx ! 0 and Dy ! 0.

On the lower level of observation the concept of a secondary plane is introduced, which refers to the

normal vectors of the considered lower-level volumes: a secondary x-plane has the x-direction as normal

vector on the lower level of observation. The secondary plane is indicated by the third index of the higher-

order stress components. Thus, the symmetry of the higher-order stresses sijk ¼ skji implies that the primary

and secondary planes can be interchanged, which occurs at the corners of a considered volume on the

higher scale of observation. The model-specific symmetry sijk ¼ sikj refers to the equilibrium of moments on
the lower scale of observation.

For the higher-order natural boundary conditions it must be determined which of the higher-order stress

components are prescribed. Two cases can be distinguished: the primary plane can be equal to or different

from the secondary plane. If they are different, the corresponding stress is balanced by its reaction force on

the neighbouring secondary volume, and it cannot be prescribed. In contrast, if the primary plane and

secondary plane are the same, the corresponding stress should be equilibrated by externally applied trac-

tions. Thus, the higher-order boundary conditions should be expressed in terms of s111 and s121 on the

primary x-plane and in terms of s212 and s222 on the primary y-plane.
5. Conclusions

Continuum models can be linked to discrete models via continualisation strategies. It is not necessary to

restrict to classical continua––also higher-order continua can be derived. In this paper, several aspects

concerning the derivation of higher-order continuum models from the corresponding discrete media have

been addressed.

Firstly, it has been shown in 1D and 2D that continualisation of the equations of motion and contin-

ualisation of the energy yield identical results.

Secondly, an intrinsic element of the continualisation strategy should be the isotropy of the resulting
continuum via a suitable selection of parameters. While this is relatively straightforward for classical

continua, more sophisticated measures are needed for second-order continua. Here a novel approach is

presented in which not one, but two layers of neighbouring particles are accounted for in the continuali-

sation procedure. For a specific stiffness ratio of the two types of interaction, the second-order continuum

becomes isotropic. The corresponding energy functional has been derived, and it was found that the higher

order part of this functional cannot be expressed uniquely: products of first and third displacement

derivatives may be rewritten as products of two second derivatives, and vice versa.

Thirdly, boundary conditions have been derived that are consistent with the energy functional and with
the equations of motion. Due to the higher order of the field equations, also higher-order boundary

conditions are obtained. Two types of stresses can be distinguished: standard stresses work-conjugate to the

classical strain, and higher-order stresses work-conjugate to the strain gradients. The standard stresses

consist of a classical part and a higher-order part; the higher-order part of the standard stresses have been

linked to the higher-order stresses, and the physical interpretation of this relation is identified as a state of

equilibrium on a lower scale of observation.

Finally, let us briefly address the fundamental issue of whether continuous (and homogeneous) models

derived from discrete models to be preferred over the underlying discrete models themselves. Obviously,
continualisation leads to a loss of accuracy. On the other hand, in many situations the continuous models
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are much more efficient for numerical evaluation. The reason is that in discrete models the number of

degrees of freedom is univocally set by the number of particles in the considered volume, whereas in

continuous models the number of degrees of freedom can be chosen in relation to the specific loading

conditions. This means that for continuous models the number of degrees of freedom to be considered can
be lowered dramatically, for instance in zones of slowly varying deformations.
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