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Abstract

In this paper, the derivation of higher-order continuum models from a discrete medium is addressed, with the
following aims: (i) for a given discrete model and a given coupling of discrete and continuum degrees of freedom, the
continuum should be defined uniquely, (ii) the continuum is isotropic, and (iii) boundary conditions are derived
consistently with the energy functional and the equations of motion of the continuum. Firstly, a comparison is made
between two continualisation methods, namely based on the equations of motion and on the energy functional. They
are shown to give identical results. Secondly, the issue of isotropy is addressed. A new approach is developed in which
two, rather than one, layers of neighbouring particles are considered. Finally, the formulation and interpretation of
boundary conditions is treated. By means of the Hamilton—Ostrogradsky principle, boundary conditions are derived
that are consistent with the energy functional and the equations of motion. A relation between standard stresses and
higher-order stresses is derived and used to make an interpretation of the higher-order stresses. An additional result of
this study is the non-uniqueness of the higher-order contributions to the energy.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In many fields of engineering an interaction between spatial scales exists. Processes on lower scales of
observation (e.g. microscale, nanoscale) have an influence on higher scales of observation (e.g. macro-scale)
and vice versa. Modelling approaches aim to balance the accuracy and the efficiency of the model, therefore
taking into account the full detail of the lower scales is not a feasible option. One of the alternative
strategies is to replace the inhomogeneities of the lower scales by an enhanced continuum description on the
higher scale. Depending on the model description of the lower scales, use can then be made of homoge-
nisation techniques (translating an inhomogeneous continuum into a homogeneous continuum) or
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continualisation techniques (translating a discrete medium into a homgeneous continuum). In this work,
attention is focussed on continualisation of regular discrete media.

The simplest continuum model that can be obtained via continualisation is the so-called classical con-
tinuum, in which the constitutive equations relate the standard stresses to the standard strains algebraically.
More accurate descriptions of the underlying microstructure or nanostructure can be obtained by
enhancing the constitutive relations to differential equations, thereby obtaining so-called higher-order
continua. For linear elastic models, the order of the continuum is retrieved by taking the highest order of
displacement derivative in the equilibrium equations, minus two. This nomenclature is followed below: a
second-order model contains fourth-order displacement derivatives and lower in the equations of motion.
Invariably, the higher-order spatial derivatives are accompanied by factors of a certain length scale; it is this
length scale that represents the lower scales.

Second-order models have been derived from discrete models and inhomogeneous continua in the lit-
erature, see for instance (Rubin et al., 1995; Chang and Gao, 1995; Miihlhaus and Oka, 1996; Suiker et al.,
2001; Chen and Fish, 2001; Chang et al., 2002; Andrianov et al., 2003; Triantafyllidis and Bardenhagen,
1993), although their stability is not always guaranteed (Rubin et al., 1995; Miihlhaus and Oka, 1996;
Suiker et al., 2001; Chen and Fish, 2001; Chang et al., 2002; Askes et al., 2002; Metrikine and Askes, 2002;
Askes and Metrikine, 2002). Other second-order models have been proposed in order to regularise sin-
gularities in the solution (Aifantis, 1984; Aifantis, 1987; Schreyer and Chen, 1986; Lasry and Belytschko,
1988; Miihlhaus and Aifantis, 1991; de Borst and Miihlhaus, 1992; Sluys, 1992; Pamin, 1994; Triantafyllidis
and Aifantis, 1986; Altan and Aifantis, 1997; Zhu et al., 1997; Fleck and Hutchinson, 2001; Peerlings et al.,
1996; Comi and Driemeier, 1998; Askes and Sluys, 2002; Chambon et al., 1998; Gutkin, 2000; Askes and
Sluys, 2003). More conditions could be imposed on the format of second-order models, however, below the
restriction is made to three issues:

(1) The continuum must be defined uniquely for a given discrete model and for a given link between the
degrees of freedom of the discrete model and those of the continuum. Various continualisation strate-
gies exist, but it is required that they yield the same field equations for the continuum, including the
same higher-order constitutive coefficients. In Section 2, two approaches will be scrutinised in the con-
text of a one-dimensional system.

(2) Many materials behave isotropically on the higher scales of observation. For these materials, the con-
tinuum should be isotropic, even so the underlying discrete model is anisotropic. A new approach to
derive an isotropic second-order continuum is presented in Section 3.

(3) Higher-order field equations lead to higher-order boundary conditions. The boundary conditions
should be formulated consistently with the energy functional and the equations of motion. This can
be accomplished by applying the Hamilton—Ostrogradsky principle, cf. Section 4. Furthermore, the
physical meaning of the boundary conditions should be investigated.

Although it is admitted that stability of the derived models is of paramount importance, this issue will
only be touched briefly upon in Section 3.3.

2. Continualisation procedures

Different strategies can be taken to derive a continuum model from a discrete medium. Below, we
distinguish between continualisation procedures that are applied to the equations of motion (Section 2.1)
and to the energy functional (Section 2.2). For simplicity, a one-dimensional medium is considered,
although the findings can be straightforwardly extended to multiple dimensions (see for instance Section 3).
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Fig. 1. One-dimensional discrete medium.

The geometry of the discrete medium is depicted in Fig. 1. All particles have mass M and all springs have
stiffness K. The interparticle distance is denoted as /.

2.1. Continualisation of the equations of motion

The equation of motion for the discrete particle m is written as
Mxl) = Froy — F; = K (x") — 2% 4 x(m=) (1)

In this work, subscripts x, y and ¢ denote derivatives. Tensile forces F in the springs are assumed to be
positive. To continualise Eq. (1), x" is replaced by the displacement of the continuum u(x), whereas the
displacements of the neighbouring particles x"*!) are replaced by u(x £ ). Taylor series expansions are
used for u(x & /) according to

ulx £ 1) = u(x) £ lu(x) + % Pu(x) + é Pt (x) + - - - )

With these substitutions, Eq. (1) is elaborated as

1 1
=E XX 1A 12 XXXX AN 14 XXXXXX U 3
pity (u + 73 [ therss + 35 T thecec + ) 3)
where the macroscopic material parameters p = M /A4l and E = KI/A have been introduced, and 4 is the
cross-sectional area. For notational simplicity, the dependence of u and its derivatives on x and ¢ is not
shown explicitly. The classical one-dimensional wave equation is obtained from Eq. (3) by neglecting all
terms with powers of [ higher than 0.

2.2. Continualisation of the energy functional

Alternatively, the transition from discrete model to continuum can be made on the level of the energy
functionals. The Lagrangian %™ associated with particle m is written as the difference of the kinetic energy
and potential energy:

1
—K{ (m+1) _ L (m)]2 (m) _ L(m—1) 2} 4

S ) — 2 ) — ) )
Eq. (4) expresses the kinetic energy of particle x" and the potential energy corresponding to the two
springs attached to this particle. For a continuous medium, the Lagrangian must be recast as a Lagrangian
density. However, it must be realised that spring i is attached to two particles, therefore the contribution of
the potential energy as given in Eq. (4) must be divided by two to obtain the correct potential energy

density. Thus,

m m m 1 7 2
) )~ = Sy -

g sl

J= = (5)
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where / is the Lagrangian density of the continuum. In the continualisation the discrete degrees of freedom
are again replaced by their continuous counterparts, and Taylor series expansions are applied where
appropriate. This yields

= Loty - Le g 4 L P+ L P + 2
4= 2p U; 4 Uy 2 Uyx 6 Unxx 2 4 Unxxx

+ L + L L + 2 (6)
u.\’ 2 uXX 6 uxxx 2 4 uXXXX
The equation of motion in its Lagrangian format reads (Metrikine and Askes, 2002)

0o 0w, @ @ o )
Ot du,  Ox Ou, Ox? Ou,, Ox3 Ouy,

Substituting Eq. (6) in Eq. (7) and grouping together the various powers of / yields

—elu e (Lo Dy o (LoD DL - (8)
Pla =B M T 672 g ) Mo T\ 120 28 736 48 ' 120 )" Mo

which is identical to Eq. (3). Note that the />-term in Eq. (8) is obtained via three contributions from Eq.
(6), corresponding tO Uy, Ueltyy and Uy liy, Tespectively. Similar observations hold for terms of /* and
higher.

3. Derivation of an isotropic second-order continuum

With the conclusion, obtained from Section 2, that continualisation of the equations of motion and of
energy are equivalent, either approach could be chosen in the sequel to derive a continuum model from a
discrete medium.

3.1. Discrete model

Intuitively, discrete media resemble closely the material that they are intended to model, e.g. granular
media such as soil or concrete, or metals and ceramics on the atomistic level. Normally, some degree of
randomness is present in the structure of these materials, e.g. in terms of particle size distribution and
regularity of the interparticle connections. However, taking into account this randomness would complicate
the continualisation process significantly, therefore periodicity of the discrete medium is often assumed.

Two popular discrete and periodic representations of microstructured materials are depicted in Fig. 2,
i.e. a hexagonal lattice and a square lattice (Suiker et al., 2001). In both lattices, the characteristic distance
between the different particles is denoted by /. In the hexagonal lattice all springs are identical, whereas in
the square lattice axial springs of length / and diagonal springs of length /v/2 are distinguished. In principle,
all springs could be of the longitudinal, transversal or rotational type, which corresponds to the normal
stiffness, shear stiffness and rotational stiffness of the interparticle contact, respectively.

An inherent anisotropy is present in the two lattices of Fig. 2. In contrast, the materials that are to be
modelled with these lattices are nearly isotropic at the macroscale. Thus, in the continualisation process
certain restrictions need to be enforced such that isotropy results. For instance, an isotropic classical
continuum based on a square lattice with only longitudinal springs is obtained by taking the stiffness of the
diagonal springs half the stiffness of the axial springs (Suiker et al., 2001). The classical continuum based on
the hexagonal lattice with only longitudinal springs is automatically isotropic; however, this does not imply
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Fig. 2. Two-dimensional discrete lattices—hexagonal lattice (left) and square lattice (right).

that also second-order models based on the hexagonal lattice are automatically isotropic, which will be
elucidated in Section 3.2.

Since the classical continuum based on the hexagonal lattice is isotropic without further assumptions,
this lattice is used in the remainder of this work and the square lattice is left out of consideration. The
kinetic and potential energy corresponding to the central particle, depicted in Fig. 2 (left) and denoted by
(m,n), read

mn 1 mn m,n
g = m{ () + (i)} ©)
and
1 6
U =K AL (10)

respectively, where x"*) and y"" are the displacement components of particle (m,n) and A/, is the elon-
gation of spring i. These elongations can be elaborated as

Al = xm20) _ ) (11a)
A 1 (m+1,n+1) mn \/— (m+1,n+1) (m,n)

12:§<x +V3( e )) (11b)

1

Al3 — E (x(m,n) _ (m=1n+1) + \/—( m—1,n+1) y(m”))) (110)
Al4 — x(m,n) _ x(WI*Z.ﬁ) (lld)
Als — %( (m,n) _x(mfl,nfl) + \/g(y(m,n) _y(mfl,nfl))) (lle)
Alg = %( (m1n=1) _ y(mn) 4 \/—( _ m+l<n—l))) (11f)

whereby the springs have been numbered counter-clockwise. The equations of motion are derived via
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ag(m,n) B o ag(m,n)

- 12a
Ox(m.n) ot axt(mn) ( )
and
ay(m‘n) o ag(m,n)
=_ (12b)
ay(m,n) ot d t(m,n)
where again the Lagrangian £ J/Zl((’l"n") - %p’gf In terms of particle displacements, Egs. (12a) and
(12b) can be elaborated as
ngtm,n) — 1_<{ _ 12x(m,n) 4 4x(m+2,n) T 4x(m72,n) _|_x(m+1«,n+l) _|_x(mfl«,n+l) _|_x(mfl,n71) _|_x(m+1,nfl)
4
+\/_( (m+1,n+1) y(m—l,n+1)+y(m—l,n—l)_y(m-%—l‘n—l))} (13a)
and
(m,n) K (m,n) (m+1,n+1) (m—1,n+1) (m—1,n—1) (m+1,n—1)
My = 2 { = 12900 4 3 (0 gyl ploban) oty
+\/—< (m+1,n+1) x(m—l,n+1)+x(m—1,n—l)_x(m+1,n—1))} (13b)

for the x and y-direction, respectively. The anisotropic character of the discrete model can be verified from
the magnitude of the coefficients in Eqgs. (13a) and (13b).

3.2. Continualisation of hexagonal lattice
For the central particle (m,n) the continuous displacement components u and v are set equal to the

discrete displacement components x™" and y""), respectively. For the neighbouring particles, Taylor series
expansions are used, that is

O ( ¥)
(m=£2,n) _ + — +1 14
VR < (e £y) = S (D) (14a)
1 1 )( fl) ™ u(x,y)
(mx1ln£l) __ - -
x —u(x:l:zl,yi2\/§l) § j E (1) (1Y i Sty (14b)
for the x-direction, and
ili aiv X,
P = v £ Ly) =) (1) Eiéxiy) (152)
1 1 (3 )( \/_l) 0™o(x,y)
(mElntl) _ - - 2
y v(szzhyj:z\/gl) § : § (1) (£1Y Sxy (15b)

for the y-direction.
Expressions (14a)—(15b) can be substituted into Egs. (13a) and (13b) to yield the equations of motion of
the continuum, that is

1
b o P (Mthy + Oty + 3ty + 400y + 120, (16a)

2
Py = gE(3u,CV + ttyy + 20y) 50
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U, = %E(vxx + 3v,, + 2uy) + 11%]512 (Vacr + 1801y + Iy + bty + 1204,,) (16b)
whereby all terms of order /* and higher have been neglected. From the relative magnitude of the classical
terms it can be concluded that the Poisson’s ratio predicted by the continuum is always equal to v = 1/4.
With this Poisson’s ratio, a unique relation between the discrete spring stiffness K and the Young’s modulus
of the continuum E can be derived fitting the classical Lamé equations as K = 16EA/15, in which 4 is the
dimension in the third direction. For the mass density p it is found that M = p/?h. Crosschecking the
coefficients in Eqgs. (16a) and (16b) reveals that the classical contributions (i.e. the terms of order [°) are
isotropic, whereas the second-order terms are anisotropic.

The same results can be obtained by substituting Eqgs. (14a)—(15b) into Egs. (12a) and (12b), in which
expressions (9), (10) and the two-dimensional counterpart of (5) must be used. The so-obtained Lagrangian
density is written as

I 1 1
7= el + 0} - gE{3u§ 2 4 07 o 302 o 2ucty o+ 2o | — mElz{Buix + 92, + 307,

+ 27vf,y + 1214; + 36v§y + Ottty + 1800y, + 1204, (ver + 30yy) + 1204, (e + 3uyy)
+ 4ty (1 sy + Bty + 300y + 3030) + 40, (e + ity + Y0y + 90

+ Aty + ,) Bty + 3ttyyy + Dy + 9%,)} (17)

from which the equations of motion (16a) and (16b) can be retrieved via

0oL 002 Q0L O 0 O 0L 0o O u & W

% 0w, 0xOu, Oy Ou,  Ox Oun | Ox0y dmy | O)F Ouy 0% Our 0320y Oy
o 0A o® 04

- . 18
0x0y? Ouyy, 0y Ouyy, (18a)
0w 0w 0w Bu QU D u O U
otdv,  Ox v, Oy ov, ox?0uv, OxOy Ov, 0y? 0v,, Ox3 Oy,  OX20Y Oy
3 y) 304
0 ) o° 0 (18b)

 x0)? vy, OYP Ouyy,

3.3. Continualisation of extended hexagonal lattice

The hexagonal lattice as described above does not lead to an isotropic second-order model. If isotropy is
desired, amendments are needed. In the authors’ opinion, these amendments should concern with the
discrete medium, such that the continualisation procedure does not require additional assumptions but
leads to isotropy automatically. To this end, another layer of particles is taken into account, such that an
extended hexagonal lattice is obtained, see Fig. 3. The two sets of springs (one for the inner layer of
neighbouring particles, one for the outer layer) are assumed to have different stiffnesses, denoted by K; and
K5, respectively. Physically, this can be thought of as a representation of inter-particle contact (inner layer)
and long-range interaction via a matrix material (outer layer).

The equations of motion of the continuum in terms of the discrete material parameters M, K; and K, can
be elaborated as
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Fig. 3. Extended hexagonal lattice.

3 1
Mu,, = g (K1 4 3K:) P {Bue + uyy + 200} + T8 P{(11K) 4 81K>)thyere + (6K + 162K )1ty

—+ (3K1 —+ 9K2)MJ,}W + (4K1 —+ 108K2)Ux)w —+ (12K1 —+ 36K2)nyyy} (198_)

and

3 1
Mo, =3 (K1 + 3K>) {300 + vy + 2uy | + 8 P{(Ky + 27K) ) Vs + (18K + 54K5)yy

=+ (9K1 =+ 99K2)U}9yy =+ (12K1 + 36K2)uxm =+ (4K1 =+ 108K2)uxm} (19b)

Similar to the continualisation of the hexagonal lattice in Section 3.2, it is found that the classical terms are
isotropic. The higher-order terms can be made isotropic by requiring that K; = 9K,. Furthermore, fitting
the classical Lamé equations yields K; = 4Eh/5 and M = pl?h. With these substitutions, Egs. (19a) and
(19b) are elaborated as

2 1

Pty =< E (B + uyy + 20) + %Elz (Stheer + Othrnyy + Uy + Yy + 0130 (20a)
2 1,

POy = gE(vW + 3u,, + 2uxy) + EEI (vmx + OUyyyy + Sy + Dy + 4uxm) (20b)

Note that the only changes with respect to Egs. (16a) and (16b) concern with the higher-order terms.
The Lagrangian density for this model is obtained by continualisation of the Lagrangian function of the
extended hexagonal lattice. It is found that
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1 1 1
)= 5p{uf +u} - gE{Suﬁ + 1) + v; + 30) 4 2u, + ZMyUx} — %Elz{ISuix + 3u}, + vy,
+ 151;;, + 12u§y + 121;§y + Ottyyttyy + OV Uy + 1204 (Ve + ) + 1204 (1 + 1)
+ 4ty (Sttee + 3ty + 30y + Uyyy) + 40y (U + Bttyy + 3Uay + 50y
+ 4(uy + vy) Bty + thyyy + Ve + 3vxyy)} (21)

which can be used to derive the equations of motion through Egs. (18a) and (18b). The Lagrangian density
given in Eq. (21) has been derived directly from the energy of the discrete system, and as a result it contains
first, second and third derivatives of the displacements. To simplify further manipulations of the
Lagrangian density as given below in Section 4, all products of first and third derivatives are replaced by
products of second derivatives. Integration by parts of the various products of first and third derivatives,
while neglecting boundary terms, yields the following equalities to be understood in a weak sense

UxUyyy = _uix (223)
1 2

uxuxyy = - guxxuyy - gu)zcy (22b)
2 1

UxUxyy = — g UxxUxy — g Uyy Uxx (220)

etc., in which an equal treatment of integration in x and y-direction is assumed. By means of the so-obtained
identities (22), the Lagrangian density (21) can be elaborated as

1 1 1
A= 5p{ut2 + v} — gE{3”)2c + uf + v+ 3v§ + 2u, + Zuyvx} +%E12{5<”§x + vfy) + ufy + 02,

+ 4(”§y + U)%y) + 2(tcttyy + Vi) + 4<”xrvx,v Tt Uy Uy + Uy Une + ”x,vvw)} (23)

such that a functional with at most second derivatives is obtained.
Two important observations can be made:

(1) Inspection of Egs. (21) and (23) shows that the higher-order contribution to the potential energy cannot
be expressed uniquely. In particular, the various terms can be written either as products of first and
third derivatives or as products of second derivatives. It can be verified that the equations of motion
(20a) and (20b) are retrieved from each of the energy functionals, making use of Egs. (18a) and (18b).

(2) Taking for instance u, = v, = 0 it is seen that the higher-order part of the potential energy becomes neg-
ative. Thus, unconditional positive definiteness of the potential energy is not fulfilled and instabilities
may occur (Askes et al., 2002; Metrikine and Askes, 2002; Askes and Metrikine, 2002). This is indeed
a severe drawback of this model, which is caused by the truncation of the Taylor series. It can be over-
come by a relaxed kinematic coupling of discrete model and continuum, see for instance (Metrikine and
Askes, 2002; Askes and Metrikine, 2002) or by using Padé approximations, see (Rubin et al., 1995;
Chen and Fish, 2001; Andrianov et al., 2003).

It is noted that the above procedure can be used to derive an isotropic second-order model. Taking into
account infinitely many terms in the continualisation procedure will yield the equations of the discrete
lattice, which are anisotropic. Thus, additional measures are needed to guarantee that models of order four
are isotropic, e.g. considering also the third layer of neighbouring particles.
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4. Formulation and interpretation of boundary conditions

Above, the equations of motion have been derived that are consistent with the underlying energy
functional. To complete the model description, boundary conditions must be derived that are consistent
with the equations of motion. To this end, the Hamilton—Ostrogradsky principle is applied to the
Lagrangian density derived above. In particular, use is made of Eq. (23) rather than of (21), such that 4 only
depends on the first and second spatial derivatives of u and v and on the first time derivatives. However,
employing the original Lagrangian density given through Eq. (21) would give identical results.

4.1. Hamilton—Ostrogradsky principle

A perturbation of the displacements is considered according to
U=u+e (24a)

b=v+en (24b)

whereby ¢ and n are normalised perturbations and e is the amplitude of the perturbation. It is assumed that
both (u,v) and (@,0) describe the motion of the considered body from time # to time 2, therefore
E(t)) = E(t) = n(t1) = n() = 0. The body is assumed to be extended over [(x4, v.), (x3,)]. The Hamilton—
Ostrogradsky principle states that (Goldstein, 1964; Washizu, 1975; Lurie, 2002)

d 5] Xp Vb
— (/ / / )Ldydxdt) =0 (25)
=0 1 Xa Ya

de

whereby 4 is evaluated at the perturbed configuration. Thus,

EM 04 0/ 0/ 0 04

/ / / ( —éx +a_uyéy +%éxx +%éxy +${Wéw> ddedt =0 (263)
04 04 oA oA Ry

— — — dydxdt =0 26b

/ / / (autnt avxnx+av} ’/’}+avxx’/,xx+avxy11xy+av}y”yy> y t ( )

Since the elaboration of Eq. (26b) follows similar lines as that of Eq. (26a), only Eq. (26a) is considered in
the sequel. The terms in Eq. (26a) are rewritten via

f—zzg(faa)—%a“ (27b)
oo (o)~ o7
N o B G e (274)
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For the cross-derivative term, the x and y-directions are treated on an equal basis, hence a factor %:

o, _1f0(, @Y (e @y, @ Y 1fof, %
Quy, - 2 dx \ ™ uy, oy Cax Ouy, * OxOy Ouyy 2 0y \ 7 Ouy,

o (,0 ® o
Cox (%y 6uxy> < 3y B,y } (27f)

By means of Eqgs. (27), Eq. (26a) can be elaborated as
1 2 a; 2 2
[ R R A TR P
Ot Ou, Ox Ou, Oy Ou, Ox? Ou,, OxOy Ou,, Oy* Ou,,

b [ o4 0 o4 10 04
+/x,, /y“ {_éa_u,} dydx+/ / {( Ou, 6x6uxx+§@6uxy>

o1 1 Lo 10w
_e 2t % qyd o9 29
S 29 } yar+ / / { ( o, Ty o, 20x auxy>
L,
—= P dxdt = 28
+ P éx aux‘ ¥ a Iy } ( )

Eq. (28) should hold for arbitrary &, therefore each integral is required to vanish separately. Since
&(t) = &(t) = 0, the second integral in Eq. (28) cancels automatically. From the first integral the equation
of motion in x-direction can be retrieved, i.e.

2 2 2
00l 004 0O 0L 0O 04 o- oL 0" 04 _0 (29)

ot G—u, + ox 6—ux + Oy Ou, Ox? Ou,, OxOy Ouy, Oy? auW

which is in agreement with Eq. (18a). The third and fourth integral correspond to boundary integrals,
which vanish by prescribing ¢ and/or its derivatives (kinematic or essential boundary conditions) or by
prescribing the corresponding factors in terms of A (dynamic or natural boundary conditions). Hence, the
following stress quantities can be identified:

A
oL 0 0 1 0 04 (30a)

MU T du, " ax Gu 23y uy

a:_g—u%ai;—*%aa—i (30)
T = — a?ix (30c)
T2 = —% a?iy (30d)
T = — % % (30e)
Togp = — o (30f)

Ouy,
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where indices 1 and 2 refer to the x and y-direction, respectively. The first index denotes the normal of the
plane on which the stress acts and the second index denotes the direction of the stress (which equals the x-
direction in the above equations, since only the variation of 4 with respect to ¢ is discussed in detail). The
third index in Egs. (30c)—(30f) refers to whether the variation of & with respect to x or y is taken.

The same procedure can be followed to derive the variation of the energy / with respect to 5, by which
the remaining stress components are found. In terms of the displacement derivatives, the standard stresses
o, are expressed as

2 1
0”::UQA%Jw::gEBuf%W)+i6EF(&hm4f&My+3umm+%w) (31a)
o, (1) _2 [
O1p =0y, + 0y, = gE(uy +o) + %El (vm + Uy + 30y, + u}w) =0y (31b)
© , (1 _2 1o
On = 0y + 0y = gE(uX + 31)),) + %El (um + 304y + uyy, + SUM) (31c¢)

whereby the superscripts (0) and (1) refer to the classical part and the higher-order part of the standard
stresses. The standard stresses obey the usual symmetry o> = 0,;. For the higher-order stresses 7;; it is
found that

T = — %El2 (5uxx + 20, + uyy) (32a)
T = —%El2 (Uxx + 2u,, + U_W) =Ty = Ti2 (32b)
Ty = —%Elz (1 + 204y + 1) = T221 = Ton2 (32¢)
Toyy = — %El2 (vnC + 2u,, + SI)W) (32d)

The symmetry 7y = 75;; follows directly from Eqs. (30d) and (30e); a similar symmetry holds for
Typ1 = T122. The other symmetries 7j5; = 712 and 7,15 = 71 do not follow from the Hamilton—-Ostrogradsky
principle, and should be considered as specific to this model.

4.2. Relation between standard stresses and higher-order stresses

When the expressions of the standard stresses (31a)—(31c) and those of the higher-order stresses (32a)-
(32d) are compared to the Lagrangian density, Eq. (23), it is seen that the higher-order part of the standard
stresses af;) and the higher-order stresses 7,4 both derive from the same contributions to the potential
energy. Hence, if the potential energy is to be retrieved from the various stress tensors, it should hold that

Xp Vb 1 Xp Vb
/ / /agj>d8,:,-dydx:/ / /tifkd;{ijkdydx (33)
Xq Ya & Xa Ya x

where index notation is used, ¢; are the usual (infinitesimal) strains work-conjugate to the standard stresses
0;j, and y; = Oe;/0x; are the strain gradients work-conjugate to the higher-order stresses 7;;. Integrating
Eq. (33) by parts yields

Xb Vb
I AACE
Xa Ya 3

a‘C,'jk
6xk

ﬁ%@azo (34)
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whereby boundary terms have been neglected. For arbitrary strain fields it thus follows that

1 _ _ Yk
o), = o, (35)
which is satisfied by the generic stress definitions (30a)—(30f) as well as by the model-specific stress defi-
nitions (31a)—(31c), (32a)—(32d).

4.3. Interpretation of natural boundary conditions

The format of the non-standard boundary conditions in a gradient-enhanced continuum has been
subject of ongoing debate, see e.g. (Metrikine and Askes, 2002; Miithlhaus and Aifantis, 1991; de Borst and
Miihlhaus, 1992; Pamin, 1994; Fleck and Hutchinson, 2001; Peerlings et al., 1996; Toupin, 1962; Mindlin,
1964; Ru and Aifantis, 1993; Polizzotto, 2003). Below, an interpretation is offered that is based on
observations found earlier in this work:

(1) From Eq. (28) it follows that the higher-order stresses are work-conjugate to variations with respect to x
and y of the perturbations & and 5 on the boundaries, e.g. 71, is work-conjugate to &, on the boundary
with x as normal vector, etc. Taking variations of ¢ and 1 on the boundaries indicates that a lower scale
of observation must be chosen.

(2) In Eq. (35) a relation was found between the higher-order part of the standard stresses on the one hand
and the higher-order stresses on the other hand. This equation takes the format of an equilibrium equa-
tion, in which the divergence of a stress tensor equals minus a body force.

On the higher scale of observation a distinction is made between boundaries with x and y as normal
vector, cf. the first index of the stress quantities. These planes will be referred to as the primary planes; a
primary x-plane denotes that the x-direction is the normal vector on the higher level of observation, and vice

T ATy
Toa ATy Oz
o .0
Toss 2 Ton AT <: ' ; Gy,
],
l oy Ton R l o
T ' 1
221 +ATy, \ \ )
T
T
TipptATy,
Ty ATy, <I_.
(1)
(73 Ty AT
Tin . Ta
. N l G T
21 +ATyy,
Ti2
T

Fig. 4. Physical interpretation of higher-order stresses—higher-scale of observation (top right) and lower scales of observation with
primary x-plane (bottom) and primary y-plane (top left).
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versa for the primary y-plane. These primary planes are depicted in Fig. 4 together with all stress com-
ponents (standard and higher-order) that are relevant for each primary plane.

Whereas the classical equations of motion in terms of divergence of (standard) stress hold on the higher
scale of observation, on the lower scale of observation fluctuations of the macroscopic stress fields are
considered, which are driven by Eq. (35): taking the dimensions of the considered volume on the lower scale
as Ax and Ay, Eq. (35) is retrieved by taking the limits Ax — 0 and Ay — 0.

On the lower level of observation the concept of a secondary plane is introduced, which refers to the
normal vectors of the considered lower-level volumes: a secondary x-plane has the x-direction as normal
vector on the lower level of observation. The secondary plane is indicated by the third index of the higher-
order stress components. Thus, the symmetry of the higher-order stresses 7, = 74; implies that the primary
and secondary planes can be interchanged, which occurs at the corners of a considered volume on the
higher scale of observation. The model-specific symmetry t;; = 7, refers to the equilibrium of moments on
the lower scale of observation.

For the higher-order natural boundary conditions it must be determined which of the higher-order stress
components are prescribed. Two cases can be distinguished: the primary plane can be equal to or different
from the secondary plane. If they are different, the corresponding stress is balanced by its reaction force on
the neighbouring secondary volume, and it cannot be prescribed. In contrast, if the primary plane and
secondary plane are the same, the corresponding stress should be equilibrated by externally applied trac-
tions. Thus, the higher-order boundary conditions should be expressed in terms of 7;;; and 7;5; on the
primary x-plane and in terms of 7,5, and 75, on the primary y-plane.

5. Conclusions

Continuum models can be linked to discrete models via continualisation strategies. It is not necessary to
restrict to classical continua—also higher-order continua can be derived. In this paper, several aspects
concerning the derivation of higher-order continuum models from the corresponding discrete media have
been addressed.

Firstly, it has been shown in 1D and 2D that continualisation of the equations of motion and contin-
ualisation of the energy yield identical results.

Secondly, an intrinsic element of the continualisation strategy should be the isotropy of the resulting
continuum via a suitable selection of parameters. While this is relatively straightforward for classical
continua, more sophisticated measures are needed for second-order continua. Here a novel approach is
presented in which not one, but two layers of neighbouring particles are accounted for in the continuali-
sation procedure. For a specific stiffness ratio of the two types of interaction, the second-order continuum
becomes isotropic. The corresponding energy functional has been derived, and it was found that the higher
order part of this functional cannot be expressed uniquely: products of first and third displacement
derivatives may be rewritten as products of two second derivatives, and vice versa.

Thirdly, boundary conditions have been derived that are consistent with the energy functional and with
the equations of motion. Due to the higher order of the field equations, also higher-order boundary
conditions are obtained. Two types of stresses can be distinguished: standard stresses work-conjugate to the
classical strain, and higher-order stresses work-conjugate to the strain gradients. The standard stresses
consist of a classical part and a higher-order part; the higher-order part of the standard stresses have been
linked to the higher-order stresses, and the physical interpretation of this relation is identified as a state of
equilibrium on a lower scale of observation.

Finally, let us briefly address the fundamental issue of whether continuous (and homogeneous) models
derived from discrete models to be preferred over the underlying discrete models themselves. Obviously,
continualisation leads to a loss of accuracy. On the other hand, in many situations the continuous models
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are much more efficient for numerical evaluation. The reason is that in discrete models the number of
degrees of freedom is univocally set by the number of particles in the considered volume, whereas in
continuous models the number of degrees of freedom can be chosen in relation to the specific loading
conditions. This means that for continuous models the number of degrees of freedom to be considered can
be lowered dramatically, for instance in zones of slowly varying deformations.
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